ufcolorado.blogg.se

Another word for missing information
Another word for missing information










When first encountered, this may not sound like a good idea. That’s the process of filling in missing data using a best-estimate from all the other data that exists.

another word for missing information

Mice is our go to package for multiple imputation. Pass either or neither e.g. to summarise data frame or tibble:Įxplanatory = c( "age", "sex.factor", "nodes", "obstruct.factor", "smoking_mcar") dependent = "mort_5yr" colon_s %>% finalfit(dependent, explanatory) %>% knitr :: kable( row.names= FALSE, align = c( "l", "l", "r", "r", "r", "r")) # Omit when you run #> Note: dependent includes missing data. The dependent and explanatory are for convenience. The function summarises a data frame or tibble by numeric (continuous) variables and factor (discrete) variables. Library(finalfit) # Create some extra missing data # Smoking missing completely at random set.seed( 1) colon_s $smoking_mcar = sample( c( "Smoker", "Non-smoker", NA), dim(colon_s), replace= TRUE, prob = c( 0.2, 0.7, 0.1)) %>% factor() %>% ff_label( "Smoking (MCAR)") # Smoking missing conditional on patient sex colon_s $smoking_mar = sample( c( "Smoker", "Non-smoker", NA), sum(colon_s $sex.factor = "Female"), replace = TRUE, prob = c( 0.1, 0.5, 0.4)) colon_s $smoking_mar = sample( c( "Smoker", "Non-smoker", NA), sum(colon_s $sex.factor = "Male"), replace= TRUE, prob = c( 0.15, 0.75, 0.1)) colon_s $smoking_mar = factor(colon_s $smoking_mar) %>% ff_label( "Smoking (MAR)") # Examine with ff_glimpse explanatory = c( "age", "sex.factor", "nodes", "obstruct.factor", "smoking_mcar", "smoking_mar") dependent = "mort_5yr" colon_s %>% ff_glimpse(dependent, explanatory) #> $Continuous #> label var_type n missing_n missing_percent mean sd min #> age Age (years) 929 0 0.0 59.8 11.9 18.0 #> nodes nodes 911 18 1.9 3.7 3.6 0.0 #> quartile_25 median quartile_75 max #> age 53.0 61.0 69.0 85.0 #> nodes 1.0 2.0 5.0 33.0 #> #> $Categorical #> label var_type n missing_n missing_percent #> mort_5yr Mortality 5 year 915 14 1.5 #> sex.factor Sex 929 0 0.0 #> obstruct.factor Obstruction 908 21 2.3 #> smoking_mcar Smoking (MCAR) 828 101 10.9 #> smoking_mar Smoking (MAR) 719 210 22.6 #> levels_n levels levels_count #> mort_5yr 2 "Alive", "Died", "(Missing)" 511, 404, 14 #> sex.factor 2 "Female", "Male" 445, 484 #> obstruct.factor 2 "No", "Yes", "(Missing)" 732, 176, 21 #> smoking_mcar 2 "Non-smoker", "Smoker", "(Missing)" 645, 183, 101 #> smoking_mar 2 "Non-smoker", "Smoker", "(Missing)" 591, 128, 210 #> levels_percent #> mort_5yr 55.0, 43.5, 1.5 #> sex.factor 48, 52 #> obstruct.factor 78.8, 18.9, 2.3 #> smoking_mcar 69, 20, 11 #> smoking_mar 64, 14, 23












Another word for missing information